Wageningen University Improves Workflow And Communication With The Help Of eLabNext

Learn how Wageningen University improves workflow and communication amongst colleagues with eLabNext

A laboratoryA laboratory
Academia

Wageningen University Improves Workflow And Communication With The Help Of eLabNext

Learn how Wageningen University improves workflow and communication amongst colleagues with eLabNext

HEADQUARTERS
Wageningen, Gelderland, Netherlands
SIZE
Enterprise
SEGMENT
Academia

Table of Contents

Author

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Table of Contents

Because everyone is working on the same platform it is easy to stay on top of things: sharing background information, protocols, and samples.

Kathwarina Hanika, PhD student, Plant breeding & Phytopathology

Plant Breeding

At Plant Breeding (Wageningen University), they work with a variety of plants/crops on a wide spectrum of different topics. More precisely, the project (and topic of this case study) focuses on the interaction between a tomato and a pathogenic fungus. In the scope of resistance breeding, Plant Breeding aims to identify factors that make a plant susceptible in order to make it resistant.

Project description

Worldwide, vascular wilt disease caused by the fungus Verticillium dahliae affects a wide range of economically important crops. As this disease is difficult to control, disease management is highly dependent on plant resistance. The latter can be achieved by impairing those plant genes which are "abused" by the fungus for its own benefits. Impairing these genes may lead to resistance. Unfortunately, little is known about these genes for V. dahliae, therefore this study aims at identifying and understanding these genes in order to facilitate breeding efforts in tomato and other crops to obtain resistance to vascular wilt disease.

Goal

Map and isolate new resistance genes (Rgenes) in tomato against race 2 strains by using germplasm that has previously shown to display resistance against this race at Wageningen UR (WUR).

Challenge

Share data placed in different locations by diverse people

As a PhD student, Hanika manages a whole project from planning experiments to execution, analysis to publishing. If students and technicians also contribute to this work, it can get extremely difficult to keep an overview.

Solution

All data is centralized and with a structured overview

eLabNext has helped to arrange work in an organized manner. Because everyone is working on the same platform it is easy to stay on top of things: sharing background information, protocols, and samples.

Result

Improved workflow and communication with colleagues

Working with eLabNext's ELN capabilities has significantly improved data management at Plant Breeding. Digital sample storage has become indispensable in everyday work. Their research has benefited from the easy collaboration with colleagues to share protocols, samples and data.

Because everyone is working on the same platform it is easy to stay on top of things: sharing background information, protocols, and samples.

Kathwarina Hanika, PhD student, Plant breeding & Phytopathology

Plant Breeding

At Plant Breeding (Wageningen University), they work with a variety of plants/crops on a wide spectrum of different topics. More precisely, the project (and topic of this case study) focuses on the interaction between a tomato and a pathogenic fungus. In the scope of resistance breeding, Plant Breeding aims to identify factors that make a plant susceptible in order to make it resistant.

Project description

Worldwide, vascular wilt disease caused by the fungus Verticillium dahliae affects a wide range of economically important crops. As this disease is difficult to control, disease management is highly dependent on plant resistance. The latter can be achieved by impairing those plant genes which are "abused" by the fungus for its own benefits. Impairing these genes may lead to resistance. Unfortunately, little is known about these genes for V. dahliae, therefore this study aims at identifying and understanding these genes in order to facilitate breeding efforts in tomato and other crops to obtain resistance to vascular wilt disease.

Goal

Map and isolate new resistance genes (Rgenes) in tomato against race 2 strains by using germplasm that has previously shown to display resistance against this race at Wageningen UR (WUR).

Challenge

Share data placed in different locations by diverse people

As a PhD student, Hanika manages a whole project from planning experiments to execution, analysis to publishing. If students and technicians also contribute to this work, it can get extremely difficult to keep an overview.

Solution

All data is centralized and with a structured overview

eLabNext has helped to arrange work in an organized manner. Because everyone is working on the same platform it is easy to stay on top of things: sharing background information, protocols, and samples.

Result

Improved workflow and communication with colleagues

Working with eLabNext's ELN capabilities has significantly improved data management at Plant Breeding. Digital sample storage has become indispensable in everyday work. Their research has benefited from the easy collaboration with colleagues to share protocols, samples and data.

Sind Sie bereit, Ihr Labor umzugestalten?

Verbessern Sie den Laborbetrieb, verbessern Sie die Zusammenarbeit und gewährleisten Sie die Datensicherheit mit eLabNext.

Häkchen-Symbol

Experiment management

Häkchen-Symbol

Inventory management

Häkchen-Symbol

Improved collaboration

Häkchen-Symbol

Verwaltung von Protokollen

Häkchen-Symbol

Workflow-Management für die Forschung

Eine Wissenschaftlerin

Melde dich für unseren Newsletter an

Holen Sie sich die neuesten Tipps, Artikel und exklusiven Inhalte zum modernen Labormanagement in Ihren Posteingang.
Danke! Deine Einreichung ist eingegangen!
Please check your email to verify your submission.
Hoppla! Beim Absenden des Formulars ist etwas schief gelaufen.